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While social media platforms play an important role in our daily lives in obtaining the latest news and trends from across the

globe, they are known to be prone to widespread proliferation of harmful information in diferent forms leading to miscon-

ceptions among the masses. Accordingly, several prior works have attempted to tag social media posts with labels/classes

relecting their veracity, sentiments, hate content, etc. However, in order to have a convincing impact, it is important to addi-

tionally extract the post snippets on which the labelling decision is based. We call such a post snippet as the ‘rationale’. These

rationales signiicantly improve human trust and debuggability of the predictions, especially when detecting misinformation

or stigmas from social media posts. These rationale spans or snippets are also helpful in post-classiication social analysis,

such as for inding out the target communities in hate-speech, or for understanding the arguments or concerns against the

intake of vaccines. Also it is observed that a post may express multiple notions of misinformation, hate, sentiment, etc. Thus,

the task of determining (one or multiple) labels for a given piece of text, along with the text snippets explaining the rationale

behind each of the identiied labels is a challenging multi-label, multi-rationale classiication task, which is still nascent in the

literature.

While transformer-based encoder-decoder generative models such as BART and T5 are well-suited for the task, in this

work we show how a relatively simpler encoder-only discriminative question-answering (QA) model can be efectively

trained using simple template-based questions to accomplish the task. We thus propose MuLX-QA and demonstrate its

utility in producing (label, rationale span) pairs in two diferent settings: multi-class (on the HateXplain dataset related to

hate speech on social media), and multi-label (on the CAVES dataset related to COVID-19 anti-vaccine concerns). MuLX-QA

outperforms heavier generative models in both settings. We also demonstrate the relative advantage of our proposed

model MuLX-QA over strong baselines when trained with limited data. We perform several ablation studies, and experiments

to better understand the efect of training MuLX-QA with diferent question prompts, and draw interesting inferences.

Additionally, we show that MuLX-QA is efective on social media posts in resource-poor non-English languages as well.

Finally, we perform a qualitative analysis of our model predictions and compare them with those of our strongest baseline.
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1 INTRODUCTION

Social media platforms such as Facebook, Gab and Twitter have become crucial sources of near real-time
information about almost anything happening around the world. However, various types of social stigma also
proliferate on these platforms, including hate speech [44], rumors including conspiracy theories and anti-vaccine
concerns in the COVID-19 era [58, 59], and so on. While prior works have focused on classifying various types of
untrustworthy/harmful content from social media posts [50], most of them focus on predicting the labels without
giving any rationale behind the label assignments. This lack of transparency in their decision-making process
raises questions on the applicability of these models in real-world applications [14], since the label predictions
made by them may not be fully trusted in the absence of corresponding rationales/explanations.
The need to explain model predictions becomes particularly crucial when we deal with detecting potentially

harmful content over social media platforms, such as hate speech [4, 57], unveriied theories around the intake
of COVID-19 vaccines [9, 26, 80], etc. that can have far-reaching negative consequences on the masses. Social
media platforms often use classiication models to lag and remove such harmful content. The classiications
may or may not be correct, and there have been numerous cases where non-harmful posts have been mistakenly
removed just because of the presence of certain ‘trigger-words’.1 In such a context, it becomes important to
provide a rationale to explain why the post was lagged, in case the author of the post decides to appeal against
its lagging. Moreover, with the rise in the use of AI models afecting peoples’ daily lives, laws such as the General
Data Protection Regulation enforces the right to explanation2, thus calling for interpretable models.
It is to be noted here that while some prior works have attempted to generate rationales / explanations for

labels from within the given text (to be classiied) [44, 59], a few other works have tried to generate explanations
from outside the input text [60, 86]. In this work, we focus on extracting the ‘rationale’ spans (snippets of text)
from within the source text. This is important since we get to understand which portion of the text is responsible
for the model predicting a certain class/label. For instance, a rationale extracted from within a social media post,
predicted as harmful, can be shown to its author if he/she challenges the model prediction. In the context of
social science, these rationale spans extracted from within the posts are also helpful in understanding the speciic
opinions of users, varying from domain to domain. For instance, while classifying hate-speech, these rationales
can be further analysed to identify the target community of hate speech.
In this work, we deal with two domains/types of harmful information on the social media ś (i) hate speech,

and (ii) anti-vaccine content ś in two settings (single-label vs. multi-label), as detailed below (the domains and
datasets are detailed in Section 3). The irst domain is that of analyzing ofensive/hate speech content from social
media posts. While online hatred is unfortunately widespread these days, hate is often targeted towards speciic
communities. Hence, identifying the rationales (spans from the text portraying the hate/ofensive content) behind
classifying a post as hateful will help in various applications such as identifying the target communities, designing
counter speech [43] that might help to mitigate the issue, and so on. In this domain, we perform experiments on
the HateXplain dataset [44] where each post is to be assigned a single label from the set {Hateful, Ofensive,
Normal}, together with providing a rationale for the label in the form of an extract/span from the text. Thus, this
is a joint task involving a single-label (multi-class) classiication task and the task of providing a rationale for the
assigned label.

The second domain relates to the concerns among the masses against the intake of COVID-19 vaccines. Since
the onset of the pandemic, the online discourse around vaccines [29] has escalated greatly, with an increasing
number of people voicing their hesitancy, over social media platforms, about taking COVID-19 vaccines [8, 58].
Most prior works have been limited to classifying vaccine-related social media posts into broad categories of
Pro-Vaccine, Neutral and Anti-Vaccine, without investigating the speciic objection(s) towards vaccines that are

1https://www.internetgovernance.org/2020/12/23/exploring-the-problems-of-content-moderation-on-social-media
2https://www.privacy-regulation.eu/en/r71.htm
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mentioned in the posts, such as the potential side-efects, suspected inefectiveness, political reasons, etc.3 To
bridge this gap, our prior work [59] developed the CAVES dataset that opened up possibilities for exploring
supervised methods for the challenging task of jointly detecting anti-vax objections (possibly multiple) expressed
in a given tweet, together with extracting their corresponding rationales as spans from the tweet text. In contrast
to the previous domain, this is a joint task involving a multi-label classiication task, along with the task of
providing a rationale for every label assigned to a post. Extracting the rationales is essential to understand the
speciic objections of the users, so that they can be given suitable counter-arguments (tailored to their speciic
objections) to nudge them towards vaccination. Rationale extraction is also beneicial when some part of the
tweet contains some genuine concern about the vaccine while the other part talks about conspiracies.
For both the domains stated above, the task we address is that of (label, rationale span) tuple prediction

in a multi-label setting, that was introduced in our prior work [59] but has been explored very little in the
literature. The task is not only novel in the context of ML/NLP, but especially challenging since it requires
extracting rationales/explanations in a multi-label setting, where a separate rationale/explanation is to be provided
for each of the predicted labels for a particular input text. Though providing explanations for label prediction has
been studied extensively [41, 45, 65, 69], most of the prior works deal with explanations in a single-label setting.
To our knowledge, Mullenbach et al. [51] is the only prior work that attempted to provide explanations in a
multi-label setting; however, the explanation prediction part was unsupervised, as no dataset existed at that time
containing separate explanations for each label associated with a piece of text. Prior studies have also deliberated
the possibility of explaining model predictions using intermediate representations or attention weights [28, 44, 83].
Motivated by recent studies [53], we however, formulate the task as a span extraction problem where the model is
trained to jointly extract a sub-string of the input text as a natural language explanation behind the corresponding
label prediction.

We thus propose the MuLX-QA (Multi-Label eXplainable classifer using Question Answering) framework for
the (label, rationale span) tuple prediction task described above.MuLX-QA uses a transformer-based framework as
its backbone that is trained with carefully designed (but simple) prompt-based questions to extract sub-strings
of the input text as rationales or explanations behind the label predictions. The training uses a contrastive method,
that is, given an input text and its true labels (possibly multiple), positive and contrastive/negative questions (as
shown later in Table 5) are used to train the model. Through exhaustive experiments on both CAVES as well
as HateXplain datasets, we demonstrate that MuLX-QA, despite being a ‘simpler’ encoder-only discriminative
architecture, comprehensively outperforms more complex and computationally expensive encoder-decoder
generative models based on BART [34] or T5 [61]. Not only do we achieve state-of-the-art results on both datasets
(refer Section 5.4), we also exhibit the robustness of MuLX-QA in diferent scenarios over strong encoder-decoder
baselines (in Section 6.2). We also perform a qualitative comparison of the results given by MuLX-QA and the
baselines in Section 6.3.

Limitations of prior work:We focus on the task of explainable multi-label classiication with separate rationales
(explanations) to be extracted for each predicted label. This task was demonstrated to be challenging in our earlier
work [59], and there has been very little research on this task. Prior works have almost always considered
explainable classiication in a single-label setting. The only relevant work to our knowledge is Mullenbach et al.
[51], which is a CNN-based model (named CAML) using Word2Vec embeddings, and is outmatched by modern
Transformer-based methods. Importantly, though Mullenbach et al. [51] provided explanations in a multi-label
setting, their model was unsupervised in the explanation generation portion. To our knowledge, our work is the
irst which proposes to train multi-label classiication models in a supervised setting.

3We use the term ‘anti-vaccine (anti-vax) concern’ to refer to a speciic objection towards vaccination as expressed by the author of a social

media post, such as the potential side-efects, suspected inefectiveness, political reasons, etc.
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Also, previous studies have leveraged transformers-based question-answering (QA) models to formulate tasks
such as NER [36], entity-relation extraction [35], and summarization [46] as a machine reading comprehension
(or extractive QA) task. However, to the best of our knowledge, no prior work has adapted QA models for the
task of explainable classiication.

Novelty and contributions of this work: In this work, we propose a novel Question Answering (QA)-based
model that has not been previously explored for multi-label explainable text classiication. Though it is well-known
that a QA-based method can extract spans from text, the novelty of our approach lies in (i) training it suitably
with contrastive examples, which enables it to predict multiple labels, as well as the absence/non-association
of a label for a given text, (ii) suitable questioning/prompting and output formatting to jointly extract (label,
rationale) tuples, and (iii) making use of simple and generic templates to frame the questions, which can be easily
extended to new datasets by incorporating their respective metadata information. Our proposed model MuLX-QA
outperforms more complex and heavier encoder-decoder models despite being an encoder-only model in several
settings, as we show later in this paper.

Our work therefore makes the following contributions: (1) We design MuLX-QA, a novel approach for using a
Question-Answering (QA) model for extracting labels and explanations jointly in a multi-label setting.4 (2) We
benchmark MuLX-QA on two challenging datasets containing diferent types of misinformation prevalent on
social media, and our model outperforms several strong state-of-the-art baselines, including heavier encoder-
decoder models, on both the datasets. (3) We also conduct several analyses on MuLX-QA, including ablation
studies, and experiments to understand its behaviour in diferent settings, such as how its performance varies
with the number of contrastive/negative questions, with diferent question prompts, and with the training data
size.

Note that, we introduced the CAVES dataset in our prior work [59] along with the ‘explainable multi-label
classiication’ task, i.e., extracting multiple tuples of (label, rationale) together. We also benchmarked some
standard Transformer-based models on the CAVES dataset in [59]. This work builds upon our prior work in
three key ways, as follows. First, in this work, we perform our experiments not only on CAVES but also on
HateXplain [44] containing a diferent type of harmful content (hate speech). Second, we propose MuLX-QA
which achieves state-of-the art results on both CAVES as well as HateXplain. We also conduct several types of
analyses with our proposed model. Third, we compare our proposed model with even stronger encoder-decoder
baselines (Uniied-BART and Paraphrase), compared to the baselines used in [59].

To summarize, we motivate the societal importance of explaining label predictions through rationale span
extraction, especially when dealing with potentially harmful content over social media platforms, and propose
a novel QA-based framework for the challenging task of multi-label explainable classiication where separate
explanations are to be extracted for each predicted label.

The rest of the paper is structured as follows: Section 2 describes the related works, followed by description of
the datasets and the tuple-prediction task in Section 3. Our proposed methodology is then detailed in Section 4.
Section 5 presents the experimental results on the two datasets and Section 6 presents various analyses of our
model and its predictions. Section 7 concludes the paper.

2 RELATED WORKS

In this section, we briely discuss some prior works on multi-label classiication and explanation prediction, and
how these problems have been applied to social media data. We also discuss how Question-Answering (QA)
models have been used in the literature.

4Implementation of our model is available at https://github.com/sohampoddar26/MuLX-QA.
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Multi-Label Classiication has been studied for years [75, 93]; the reader is referred to surveys [38, 74]
for more details. Diferent paradigms of models have been tried for performing this task such as hierarchical
networks [81], sequence generation [89], transformers [21], multi-task learning [48], and zero-shot learning [33].
Multi-label classiication has also been applied extensively to various domain-speciic applications, such as
on image data [15, 16, 91], in the medical domain [21, 51], disaster mitigation domain [3, 64] and detection of
emotions/sentiments [7, 48, 68]. Models that predict labels for multi-lingual tweets have also been developed [64].
There have also been some works on code-mixed social media data that contains a mix of English with other
languages like Hindi, Tamil, Telegu, etc. Methods for tasks such as hate speech detection [67, 70] and sentiment
analysis [13, 24] have been developed for such code-mixed data.
In the broad domain of social media, there exist several tasks that boil down to the multi-label classiication

problem. For example, in the hate-speech domain, the target / category classiication is a multi-label classiication
problem [27, 90]. The SemEval-2018 Task on multi-emotion classiication [47] enables classiication of 11 diferent
types of emotion categories from tweets [6, 48]. Some prior work also perform multi-label classiication to
identify users’ interests from Reddit data [22]. Finally, our prior work [59] developed the CAVES dataset to enable
multi-label classiication of tweets into their concerns towards vaccines.

Rationale / Explanation Extraction: Many research studies have voiced concerns about deep learning models
being black-boxes with lack of transparency in the outputs they produce. Hence, there are many attempts towards
developing methods that provide rationales behind the predictions made by such models [41, 45, 65, 69]. Some of
the early and popular methods have been LIME [65] and SHAP [41] which can be used to provide explanations
for any classiier. In the text domain, explanations are often in the form of spans of the input text given to the
models. These have been extracted both using generative models [37] and discriminative models using attention
weights [51] or by sequence labelling [96]. Generating explanations for image data has also been studied where
certain objects in images are being identiied as explanations [77, 95], including ones that have been adapted
for COVID-19 diagnosis [85]. There exist some other techniques that are used to generate explanations for
textual data. For instance, explanations can be generated by methods that perform keyword extraction [5, 11],
and by multi-task models that perform classiication and keyword extraction simultaneously [73]. There also
exist methods that extract text spans by predicting their starting and ending indices [21]. Finally, Aspect-based
Sentiment Analysis models [49, 88, 94] can be modiied to perform classiication while providing explanations.
There have been several studies on detecting depression and suicide risk from social media data, and due

to the nature of the task, it is imperative that explanations be provided along with the classes to prevent mis-
diagnosis [2, 32, 54, 98]. Moreover, fake news detection from social media is another domain where explanations
help build trust in predictions from the deep learning models [18, 30, 40]. Finally, as discussed before, hate-speech
detection also requires explanations to be given, and several works exist to accomplish this task of explainable
classiication [31, 42, 44, 87]. There exist a few datasets (for explainable classiication) that provide human
annotated explanations with text data [20, 44, 82, 97]. However, none of these datasets deal with a multi-label
scenario. The CAVES dataset developed in our prior work [59] uniquely provides a human-annotated explanation
for every label associated with an anti-vaccine tweet.

Question Answering Models: The task of Question answering (QA) deals with extracting an answer to a
question from a given passage, and has garnered suicient interest from the community; see [56, 71] for surveys.
The primary dataset that is the benchmark for QA models is the SQuAD dataset [63] which contains 100k
questions curated from Wikipedia articles. This dataset has been analysed by some works [66], and an updated
version SQuAD 2.0 has also been released [62]. Methods of several paradigms have been explored for this task,
including LSTM with pointer networks [78], hierarchical attention networks [79], and Transformers [10]. The
task has also been explored in a multi-lingual setting by translating the SQuAD dataset to other languages such
as Spanish [12] and Persian [1].
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Table 1. Examples of tweets with their labels and explanations from the HateXplain dataset. The explanations for diferent
labels are highlighted in blue. Note: The examples contain ofensive content due to the nature of the dataset.

Excerpt of Post Label

dad should have told the muzrat whore to fuck of and went in anyway hateful

i am black with all white friends taco man ofensive

dont think im getting my baby them white 9 he has two white j and nikes not even touched normal

3 DATASETS AND TASK

We use two datasets containing social media posts with two diferent types of untrustworthy/harmful information
ś (1) the HateXplain dataset [44] containing hate-speech posts (from Twitter and Gab), and (2) the CAVES
dataset [59] consisting of anti-vaccine (anti-vax) tweets that express concerns towards COVID-19 vaccines. This
section describes the datasets, and the task we tackle.

3.1 HateXplain dataset

The HateXplain dataset (provided in [44]) contains posts from Twitter and Gab, that are categorized as ‘hate-
speech’, ‘ofensive’ or ‘normal’.5 ‘Hate-speech’ is any speech that attacks certain individuals or groups based on
their characteristics (such as race, religion or gender), while ‘ofensive-speech’ is one that contains derogatory
terms even though it is not directly attacking any individual/group [17, 23]. The ‘normal’ class represents posts
that do not belong to the above two categories. Each post in the dataset has been categorized into exactly one of
these three classes. For each post, a rationale/explanation corresponding to the class label is given, explaining
which part of the post led to it getting labeled as ‘hate-speech’ / ‘ofensive’. It must be noted that the ‘normal’
class has no marked explanation since there is no hateful/ofensive content in these posts.

The dataset contains 19,229 posts that were labelled with a majority class by crowdsourced workers, with 30.9%
posts being ‘hate-speech’ and 28.5% posts being ‘ofensive’. Some examples of each of these classes along with
the rationale spans are given in Table 1. The dataset was split into 80% train, 10% validation and 10% test sets.

3.2 CAVES dataset

This dataset contains 9,921 anti-vaccine tweets labelled with speciic concerns/objections that the user (author
of the tweet) expresses against the use of COVID-19 vaccines (e.g., inefectiveness, side efects, etc.) [59]. The
dataset has 12 diferent classes, as detailed in Table 2, with 11 of them representing actual objections/concerns,
while the last one called ‘None’ representing łno speciic concernž.6 The distribution of classes is also given in
the last column of Table 2.
Since a tweet can contain one or more anti-vax concerns, each tweet is labelled with single/multiple labels

(minimum one, maximum three) expressing speciic objections/concerns against the intake of COVID-19 vaccines.
About 20.0% of the tweets in the dataset have more than one label whereas the remaining tweets have exactly
one label. Additionally, for each of the labels associated with a tweet, the CAVES dataset contains a separate
rationale in the form of a phrase/span appearing in the tweet-text. We have reported a few examples of tweets
along with their labels and explanations in Table 3. Note that the ‘None’ class is an exclusive class ś it is not
present in conjunction with any other classes, and tweets labeled ‘None’ have no marked explanations.

5Dataset available at https://github.com/hate-alert/HateXplain.
6Dataset available at https://github.com/sohampoddar26/caves-data.
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Table 2. The diferent classes/labels (concerns or objections towards vaccines) in the CAVES dataset [59] along with their
descriptions and distribution. Note that the percentages do NOT add up to 100% since a single tweet can have multiple
concerns/objections.

Classes Description %

conspiracy Belief in deeper conspiracies, not just money-making (e.g., vaccines are being

used to track people, COVID is a hoax).

4.9%

country Disapproval of the country where it was developed / manufactured. 2.0%

inefective Vaccines are not efective enough to prevent the disease. 16.9%

ingredients Undesirable ingredients or technology used in the vaccines. 4.4%

mandatory Vaccines should not be made mandatory. 7.9%

pharma Big Pharmaceutical companies only care about money-making, or have a con-

troversial history.

12.8%

political Governments/politicians are pushing their own agenda though the vaccines. 6.3%

religious Unwilling to get vaccinated due to religious reasons 0.6%

rushed Vaccines have not been tested properly or that the published data is not accurate. 14.9%

side-efect Side efects of the vaccines, including deaths caused. 38.4%

unnecessary Vaccines are unnecessary or alternate cures are better. 7.3%

none No speciic reason stated in the tweet or some reason diferent from the other

given classes.

6.3%

Table 3. Examples of tweets with their labels and explanations, from the CAVES dataset. The explanations for diferent labels
are highlighted in blue, red and brown.

Excerpt of Tweet Labels

STOP TAKING TOXIC VAX and expose COVID hoax and murders with mor-

phine and ventillators. there is No covid!

ingredients, conspiracy,

unnecessary

Please don’t push vaccine on us make it voluntary. We don’t trust anything to

do with Bill Gates pushing their agenda of vaccine chips!!

pharma, mandatory,

ingredients

The reason insurance companies won’t pay out if you experience the inevitable

adverse reactions, including death is because it is an "Experimental Vaccine"

side-efect, rushed

Would you want the Russian vaccine? If not, you shouldn’t want one that’s

been pushed through for political reasons either.

political, country

Catholic leaders are advising Catholics that the COVID-19 vaccine from Johnson

& Johnson is "morally compromised"

religious

I’m NOT taking your damn vaccine. Keep it out of my veins! none

3.3 Tuple Prediction Task

In this work, we address the task of extracting (label, rationale) tuples in a single/multi-label setting. Given the
joint task, our objective is twofold ś (1) to identify single/multiple labels associated with the given text, and (2) to
extract a span from the text, one for each predicted label, that explains the rationale behind the corresponding
label prediction.
For the CAVES dataset, this task translates to identifying possibly multiple anti-vax concerns expressed in

a Twitter post, together with their corresponding rationales in the form of extractive spans from the post’s
text. For the HateXplain dataset, we extract the hate-speech sentiment of the Twitter/Gab post along with its
corresponding rationale. The idea of training suitable models to automatically extract labels jointly with their
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corresponding explanations in a multi-label setting makes the task more interesting as well as challenging, as
was demonstrated in our prior work [59]. However, this task has been rarely explored in the literature.

4 PROPOSED METHODOLOGY

In this section, we describe our proposed methodology, where we map the (label, rationale) tuple-prediction task
to a standard Question-Answering (QA) model. The inal framework is calledMuLX-QA. Diferent notations
used in this section have been summarized in Table 4.

4.1 Overview of our approach

Diferent from prior works, we design a Question-Answering (QA)-based approach for the joint task of predicting
multiple labels (for a given text) together with their corresponding rationale spans from the given text. Our
intuition behind exploring a QA-approach is that the target rationale span can be thought of as an ‘answer’ to a
‘question’ about the corresponding class, such as łwhy is this text associated with the class <������>?ž or łwhy is
<������> applicable to this text?ž.

Hence we proposeMuLX-QA, a novel Question-Answering framework trained with both positive and con-
trastive questions. Figure 1 shows a pictorial overview of our model. We start with a standard transformer-based
extractive QA framework that can extract a phrase/span from the input text, given a question. More speciically,
the model, as illustrated in Fig. 1, consists of a transformer-based encoder (RoBERTa), followed by two classiica-
tion heads respectively determining the probability of each input text token to be (i) the start, and (ii) the end of
the span that can provide an answer to the question asked. For a question of the type stated above, this answer
span will be the rationale for the predicted label.

Thus a standard QA model can help achieve our goal to ind out the rationale behind the text being associated
with a certain label. However, we want to simultaneously identify the label(s) as well, apart from extracting
the rationale span(s) for each identiied label(s). Accordingly, we propose a novel strategy to train such a

framework with contrastive questions to determine the non-existence of certain labels. Speciically, we append
a special <unk> token to the input text. The model is then trained to extract the <unk> token for labels not
associated with the text while extracting a normal span for the labels present.

The rest of the section describes how we formulate the tuple prediction task as a QA-problem, and then explains
our proposed framework and training/inference strategy in detail.

4.2 Formulating the Tuple Prediction task as QA

Let <�����> =��1,��2, ...,��� be the source text of length �, that we want to classify into � classes. We prepend
the input text with a ‘begin of sequence’ (<s>) token, and append it with a special <unk> token at the end. The
question that we ask in order to determine the presence/absence of a given class <������> in the text has the
following generic template: łWhy <������>?ž. We separate the modiied input text and the question with a ‘end
of sequence’ (</s>) token. Finally, the input given to the model, I, takes the format ś “<s> <�����> <unk> </s>

Why <������>? </s>”.
Here � ∈ [1, �], and <unk> represents łunknownž. Note that while our question templates remain generic, we use
the dataset metadata to frame our questions for the two datasets as shown in Table 5. We try diferent variations
of question prompts, which will be discussed later in Section 6.2.
The model is trained to infer the context from the given tweet text <�����> and determine if <������> is

associated with the tweet by extracting a span (��� , ��� ) as the output, represented as a tuple of start (��� ) and
end (��� ) indices with respect to <�����>. The indices serve both as the rationale span and an indicator of the

presence/absence of <������> in <����>. Accordingly, (��� , ��� ) can take one of the following three combinations
of values:
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`

ECLS ET2 EUNK ESEP EQ1 EQ2ET1

RoBERTa

...

HCLS HT2 HUNK HSEP HQ1 HQ2HT1

<s> Text1 Text2 <unk> </s> Ques1 Ques2

...

...

ESEP

HSEP

</s>

...

... ...

...

ENCODER

Span Classification Layer
768 x 2

Pstart Pend

Softmax Softmax Best Index Selection
(Algorithm 1)

QA Model

Classify and
Extract Rationale

Positive and Contrastive questionsPost Text

<s> I wont take a Russian nor a Trump vaccine <unk> </s> Why is "political" a reason for not taking vaccines ? </s>

Trump vaccine

Fig. 1. The proposed MuLX-QA model. The tokens of the input text and the question (framed using the class labels) are fed
into the RoBERTa encoder, which converts them into contextualized embeddings. Embeddings corresponding to the input
text are then fed to the classification head on top to predict the token probabilities of being the start and end of the rationale
span. Examples of inputs are given in Table 5.

• (� + 1, � + 1) representing the <unk> token, thereby signifying that <������> is absent.
• (�, �), where 1 ≤ � ≤ � ≤ � representing a valid explanation ranging from the ��ℎ to ��ℎ token in the text,
thereby also signifying the presence of <������>.
• (0, 0) representing the <s> token, if no explanation is present (e.g., for the ‘None’ class in CAVES dataset
or the ‘Normal’ class in HateXplain).

Table 5 shows examples of positive and negative/contrastive questions and corresponding answers for a given
text from each dataset.

4.3 Generating inputs for Training and Testing

We now highlight the novelty of our training strategy that enables MuLX-QA to jointly extract labels together
with their corresponding target spans, for a given text. For each text in the training and validation sets, irst we
construct positive questions corresponding to each ground truth label associated with the text. Here, the target
answer spans are the corresponding ground truth rationales provided in the dataset.

Next, for the given text, we randomly sample N ‘negative’ classes among those that are not part of the ground
truth label set (for the given text). These negative classes are used to form our contrastive/negative questions. For
these questions, <unk> (representing unknown) is set as the target answer span, since the corresponding classes
are not associated with the given text. While the model is trained to predict explanation spans, training with
contrastive questions indirectly gives our model the ability to predict the labels as well (if the model predicts
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Table 4. List of diferent notations used in Section 4.

Notation Description

Symbols

<�����> The ��ℎ text input

<������> The ��ℎ class

� Number of classes

� Number of tokens in the text

��� Starting index of target span for <�����> and <������>

��� Ending index of target span for <�����> and <������>

N Negative sample rate

I Final input to the model consisting of <�����>, special tokens and a question

� Number of tokens in input to the model I

E Transformers based text encoder

� Output embedding dimension of E

H Contextualized embeddings for every token in I

H� Contextualized embeddings for irst � + 2 tokens in I

������ Trainable weights for the span start classiication layer

���� Trainable weights for the span end classiication layer

������ Vector of probabilities for each token in the input to be span start

���� Vector of probabilities for each token in the input to be span end

����� Number of best tokens to consider from ������ and ���� for Algorithm 1

Special Input Tokens

<s> Start of sequence

</s> End of sequence

<unk> Unknown

Table 5. Examples of inputs and target spans used to train MuLX-QA for the Explainable Classification. The positive questions
are formed from the ground truth targets, while N contrastive/negative questions are randomly formed from those absent
from the ground truth.

Text & Ground truth label(s) Question Target Span

HateXplain Dataset (Here, N = 2)

<s> if do not fuck with indie

or house music idk your a

faggot <unk> [Ofensive]

Why is the text ofensive ? your a faggot

Why is the text hateful ? <unk>

Why is the text normal ? <unk>

CAVES Dataset (Here, N = 3)

<s> I wont take a Russian nor

a Trump vaccine <unk>

[Political, Country]

Why is łpoliticalž a reason for not taking vaccines ? Trump vaccine

Why is łcountryž a reason for not taking vaccines ? Russian

Why is łside-efectž a reason for not taking vaccines ? <unk>

Why is łinefectivež a reason for not taking vaccines ? <unk>

Why is łnonež a reason for not taking vaccines ? <unk>

<unk> as the explanation, the corresponding label with which the question was formed/asked is not present).
Table 5 shows examples of both positive and negative questions from the HateXplain and CAVES datasets.

Additionally, during training, for every tweet in the CAVES dataset that is not labeled with the exclusive łnonež
class (please note that łnonež does not co-exist with any other class), we always include ‘none’ as one of the
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N classes for framing the negative/contrastive questions. We refer to the negative questions formed using the
‘none’ class as ‘exclusive-class questions’, an example of which is shown in the last row for the second example
(from the CAVES dataset) in Table 5.

Note that, in Table 5, we demonstrate the examples with N = 2 for HateXplain and N = 3 for the CAVES
datasets, where N is the number of contrastive/negative questions. While we perform our experiments with
diferent values ofN (detailed later in Section 6.2), it was empirically set to 2 for HateXplain and 5 for CAVES for
our inal experiments.

During the test/inference phase, for each text in the test set, we frame one question for each of the � classes in
the dataset (12 for CAVES and 3 for HateXplain) to determine their presence/absence with regards to the text.
For a given question, we say that the corresponding class is present if the trained model does not predict the
<unk> token. In such a case, the predicted answer span is considered as the rationale behind the existence of the
corresponding label. The inal output consists of all such pairs/tuples of (label, target span).

4.4 Proposed Model Architecture

Let us assume that the input sequence to the encoder, I consists of � = � +� + 4 tokens, where � is the number of
tokens in the context (text to be classiied),� is the number of tokens in the question, and the remaining 4 tokens
consist of the <s>, the <unk>, and the two </s> tokens as described earlier. Our proposed framework, as illustrated
in Figure 1, can be decomposed into two parts ś a transformer-based encoder, followed by two classiication
heads performing the span extraction. Since transformers are extensively used in recent literature, the readers can
refer to the original works [19, 76] for further details on the transformer architecture and pre-training strategies.
Let the encoder be a function � that converts the input sequence I into a sequence of contextualized vector

embeddings H ∈ R
�×� , where � is the output embedding dimension, and H = � (I). As discussed earlier in

this section, the model is trained to extract an answer span by predicting its start and end tokens. This is done
with the help of two feed-forward layers with trainable weight vectors������ ,���� ∈ R

�×1. Since the start and
end token indices can only take values from 0 (representing the <s> token) to � + 1 (representing the <unk>
token), we only consider a subset (the irst � + 1 context vectors) ofH , and call itH� ∈ R

(�+2)×� . The normalized
probabilities of the source text tokens to be the start and end of the rationale span, ������ , ���� ∈ [0, 1]

(�+2)×1, are
obtained as follows:

������ = softmax(H� ·������ )

���� = softmax(H� ·���� )

Here, softmax function is deined on a vector � as follows:

softmax(�� ) =
���∑

� � ∈� �� �
,∀�� ∈ �

During training, we calculate the cross entropy losses between the predicted probabilities and the ground truth
span indices ������� , and ����� , as follows:

L����� = −

�+1︁

�=0

1(������� ≡ �) · log ������ [�]

L��� = −

�+1︁

�=0

1(����� ≡ �) · log ���� [�]

where 1(·) represents an indicator function that returns 1 if the condition is true and 0 otherwise. The model is
trained by optimizing the joint loss L = L����� + L��� .
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During inference, our objective is to obtain the predicted indices (������� , ����� ) that correspond to the extracted
answer span. However, simply taking these to be the argmax of the probability vectors ������ and ���� to get
the indices might lead to an issue when ������� > ����� . We therefore use an inference algorithm (detailed in
Algorithm 1), where we consider the top ����� probabilities in the start and end probability vectors, and consider
all their combinations to get the pair that yields the highest sum, while respecting the constraint mentioned
above. Here, ����� is a hyper-parameter used to select only the top logits returned by argSortDecending. This
was done to limit the search space for the best answer to reduce inference time. Thus we check only up to �2

����

pairs of indices, and not all (� + 1)2 possibilities. ����� was empirically set to 20 during experiments.

Algorithm 1 Compute the best possible starting and ending indices for the answer, given the input sets of
probability vectors.)

1: function getBestIndex(������ , ���� )
2: ������ ← argSortDescending(������ )

3: ���� ← argSortDescending(���� )

4: ����� ← hashmap()

5: for ������ ∈ ������ [1 : ����� ] do
6: for ���� ∈ ���� [1 : ����� ] do
7: if (������ < ���� ) then
8: ����� = ������ [������ ] + ���� [���� ]

9: ����� [(������ , ���� )] ← �����

10: end if
11: end for
12: end for
13: return (������ , ���� ) ← argMax(�����)

14: end function

This section detailed the proposed MuLX-QA framework. In the next section, we compare the performance of
MuLX-QA on the two considered datasets with that of several strong baselines.

5 EXPERIMENTS AND RESULTS

In this section, we discuss our experimental setup followed by a description of our baselines. We then compare
the results of our proposed model against the baselines on the two datasets.

5.1 Experimental Setup

The CAVES dataset (9,921 tweets) was originally split by iterative stratiied sampling into train (70%), valida-
tion (10%) and test (20%) sets. The HateXplain dataset (19,229 posts) was also originally split into train (80%),
validation (10%) and test (10%) sets. We used these existing splits to train, validate and test all the models.

For training MuLX-QA, we leveraged transformers-based QA pipelines from the Huggingface library [84], and
experimented with pre-trained BERT [19], and RoBERTa [39] as the encoders. We observed better results with
RoBERTa, and hence used it as the encoder to train MuLX-QA.
We enforced a maximum sequence length of 128 ś any input texts longer than 128 tokens were truncated.

During training, we used a batch size of 64 and a learning rate of 1e-5. We trained all our models for 8 epochs
and saved the instance which achieved the best Macro-F1 performance on the validation set. This saved model
instance was used to evaluate the test set. The metrics used to evaluate our models on various tasks are described
below.
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5.2 Metrics for the Tuple Prediction Task

For the task of predicting (label, explanation) tuples, we calculate binary F1-scores by considering tuples as
separate entities. For a given text, we consider a predicted label-explanation tuple to be a match (true positive) if
and only if (i) the predicted label is present in the gold standard set of labels for the given text, and (ii) the predicted
explanation has an intersection-over-union (IOU) overlap of at least 50% (IOU ≥ 0.5) with the corresponding gold
standard explanation (similar to [20]). We calculate the IOU between the predicted and gold-standard explanations
at the word-level, after removing punctuations and articles. More speciically, we consider the predicted and
gold-standard explanations as bags/sets of words (after removing punctuations and articles) and then compute
the union and intersection between these two bags/sets of words.

For a given text, we calculate the #predicted tuples, #gold-standard tuples and #correct (matching) tuples, and
then calculate the Precision (#correct / #predicted), Recall (#correct / #gold-standard) and the F1-scores (harmonic
mean of precision and recall). We refer to these metrics as Tuple-Pre, Tuple-Rec, and Tuple-F1 respectively [59].

5.3 Baselines

To compare our proposed model, we consider several baselines, including encoder-only discriminative models as
well as encoder-decoder-based generative models.

Encoder-only Discriminative models: We consider several methods that predict multiple labels for a given
text along with their corresponding rationales, in the form of tuples. First, we try the ‘Rational Label’ model
provided by the authors of HateXplain [44]. It consists of a BERT-based encoder along with classiication layers for
predicting the class and its corresponding explanation from a given text. Though it can only predict a single label
with a single rationale, we applied it to both datasets to examine its performance on an explainable multi-label
dataset (CAVES). It contains a token classiication layer which predicts if a token is part of the rationale or not.
For training on the CAVES dataset, we converted each tweet with multiple labels into multiple data points with
the same tweet-text but with a diferent label. During validation and testing, they were evaluated similar to the
other models.
The ‘Multi-task’ model, introduced in our prior work [59], contains a shared COVID-Twitter-BERT-v2 [52]

encoder (which is a BERT-Large encoder pre-trained on COVID-related tweets) with two classiication layers on
top to separately predict the labels and generate the rationale spans for each of the classes. The beginning-of-
sequence token ([CLS]) embedding from the encoder output is fed to a multi-label classiication layer (linear
fully-connected network) to get the logits corresponding to each of the classes. This is followed by sigmoid
operations on each of the logits to get the probability of each class being present. The classes with a probability
score ≥ 0.5 are considered to be the predicted labels. For the explanations, the second token classiication layer
is trained using a sequence labelling approach separately for each of the classes. This is done by passing the
token embeddings from the encoder output of all the words to a linear layer that predicts if that token is part of
the rationale for each of the classes. Here, the goal is to determine which words in the text can be part of the
rationale for the given label. Finally, the explanations corresponding to the predicted labels are considered.
We also try a variation of the ‘Multi-task’ model which includes a Recurrent Neural Network (RNN) layer,

speciically a Gated Recurrent Unit (GRU), before the rationale classiication layer. The encoder output embedding
for each token is fed to the GRU layer, whose outputs are then passed to the linear classiication layer as before.

As another baseline, we use the modiied ‘ExPred’ [96] model for the multi-label setting as given in our prior
work [59]. This model is similar to the Multi-task model and is used to generate rationale spans, with label
prediction modelled as an auxiliary task. The predicted explanations are then multiplied by the original encoder
embeddings and are then fed into another multi-label classiication layer to predict the inal labels.
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Table 6. Comparison of models on the two datasets. MuLX-QA performs the best on both datasets. The best method in
each column is highlighted in bold, and second best method is underlined. Note that the HateXplain dataset has only 3
classes, hence the number of negative/contrastive questions N < 3. All results of MuLX-QA except the last row are with
the RoBERTa encoder, while the last row shows results with the CT-BERT encoder that is specifically pre-trained on tweets
related to COVID-19.

HateXplain Dataset CAVES Dataset

Model T-Pre T-Rec T-F1 T-Pre T-Rec T-F1

Encoder-Only Discriminative Baselines

Rational Label [44] (single label) 0.1266 0.1212 0.1238 0.0642 0.0521 0.0576

ExPred [96] 0.1386 0.1185 0.1278 0.1944 0.1535 0.1716

Multi-Task [59] 0.1815 0.1757 0.1786 0.3952 0.3961 0.3957

Multi-Task (w/ GRU) [59] 0.2229 0.2199 0.2214 0.3304 0.3383 0.3343

Encoder-Decoder Generative Baselines

Paraphrase (T5) [94] 0.5322 0.5322 0.5322 0.4303 0.4041 0.4168

Uniied-BART [88] 0.5232 0.5210 0.5221 0.4132 0.4187 0.4159

Proposed model

MuLX-QA (N = 2) 0.5463 0.5852 0.5651 0.3179 0.5074 0.3909

MuLX-QA (N = 5) - - - 0.4175 0.4914 0.4514

MuLX-QA (N = 9) - - - 0.4506 0.4438 0.4506

MuLX-QA with CT-BERT encoder

(N(����������) = 2, N(����� ) = 5)

0.5498 0.5884 0.5684 0.4616 0.5205 0.4893

Encoder-Decoder Generativemodels:Among the encoder-decoder generativemodels, we leverage two (suitably
modiied) models, one based on BART [34] and the other based on T5 [61].

We experiment with the ‘Paraphrase’ [94]model, which uses a T5 encoder-decoder trained to predict pairs of
label-rationale tuples by generating a template-based output. The target output for a given data point is constructed
according to the template ł<�����1> because <���������1> [����] · · · [����] <������> because <����������>ž.
Given an input text, the T5 model is then trained to generate this template output in an auto-regressive manner.
Finally, the ‘Uniied-BART ’ [88] model consists of a BART encoder-decoder trained to predict possibly

multiple pairs of labels and rationales using a generative framework. First, all the class labels are appended to
the end of the input text. The target output for the given text is then formed by converting the associated labels
and corresponding rationales into a sequence of triplets. Each triplet consists of three indices, the start and end
token positions in the input text representing the rationale span, and the target label index corresponding to the
position of the class label after the input text. The probabilities of the generated outputs are calculated using
various equations involving the input token embeddings, the BART-encoder hidden embeddings, the class token
list embeddings, and the BART-decoder output (please refer [88] for more details). Finally, beam search is used to
decode the probabilities into the target sequence of index triplets.

5.4 Comparative results

In this section, we discuss the performance of our proposed model MuLX-QA on the test sets of the two datasets,
in terms of Tuple-metrics deined above, and compare it with the baselines. Table 6 shows the results of all models
on both the HateXplain dataset and the CAVES dataset.

Results on the HateXplain dataset [Single Label per post]: Among the encoder-only baselines the Multi-
task model with GRU performs the best with a Tuple-F1 of 0.2214. The encoder-decoder generative models
perform much better with the Paraphrase method achieving Tuple-F1 score of 0.5322. The Paraphrase model has
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slightly higher scores than Uniied-BART. Our proposed model MuLX-QA performs the best on all three metrics
even though it is an encoder-only discriminative model, with a Tuple-F1 of 0.5651 (6.2% improvement over
Paraphrase).

Results on the CAVES dataset [Single/Multiple Labels per post]: Table 6 also compares the performance of
diferent models on the CAVES dataset. The Multi-Task models perform quite well, especially the non-GRU
version, with a Tuple-F1 of 0.3957. The Rational Label model performs poorly on the CAVES dataset since it
can only predict a single label. The encoder-decoder models achieve better results with Paraphrase achieving a
Tuple-F1 score of 0.4168. However, all the other models are outperformed by our encoder-only MuLX-QA (N = 5)
with a Tuple-F1 score of 0.4514 (8.3% improvement over Paraphrase). Note that it is possible to get a higher
Tuple-precision score for MuLX-QA, if we increase the value of N ≥ 6 (further details in Section 6.2).

Statistical signiicance testing: The predictions of the proposed model MuLX-QA are statistically signiicantly
better (p < 0.05) than those of the best-performing baselines for both datasets, as perMcNemar’s chi-square
test. We chose this test to compare the tuples from two classiiers since the test is applicable on paired nominal
data [72].

Further improvement with the use of domain-speciic encoders: All results of MuLX-QA in Table 6, apart
from the last row, are with a standard RoBERTa encoder, as stated earlier in this section. However, MuLX-QA
can achieve better performances with the use of domain-speciic encoders suited to the domain of the datasets.
To demonstrate this, we use COVID-Twitter-BERT-v2 [52] (abbreviated as CT-BERT) which is a BERT-Large
encoder pre-trained on COVID-related tweets, as the encoder. We tested the performance of our model with
the CT-BERT encoder on both the datasets, and the results are given in the last row of Table 6. We observe that
using a domain-speciic encoder can help improve scores on the CAVES dataset in all three metrics, with a best
Tuple-F1 score of 0.4893. We also observe slightly better scores on the HateXplain dataset, since the CT-BERT
encoder is twice as large as the RoBERTa encoder. While we achieve better scores for the task at hand with the
use of domain-speciic pre-trained encoders, in the next section, we analyze the performance of MuLX-QA with
the originally used RoBERTa encoder, since this version of the model is directly comparable to our baselines.
Further exploration on the efects of using domain-speciic encoders is left as a future work.

6 ANALYSIS

In this section, we analyse the performance of our model MuLX-QA in various scenarios.
We also perform a qualitative analysis of the predictions made by our model on the CAVES dataset and compare

it with that of the best baseline (Paraphrase).

6.1 Ablation tests over MuLX-QA

First, we perform an ablation study on two aspects of MuLX-QA ś (i) removing the ‘exclusive-class questions’,
and (ii) removing all the negative questions. We perform these experiments only on CAVES, since this is the only
dataset on which we use ‘exclusive-class questions’ to train the model.
Table 7 shows the performance of the original MuLX-QA, and the same model after these modiications are

done, on the CAVES validation set. For comparison, we also list the performance of the best baseline (Paraphrase).
We observe that removing the ‘exclusive-class questions’ reduces the Tuple-recall while leading to some increase
in the Tuple-precision, overall dropping the Tuple-F1 scores to 0.4385 (from 0.4514 of the original MuLX-QA).
The performance is however still better than Paraphrase, which has a Tuple-F1 score of 0.4168. If we remove
the negative questions (and hence the guidance that the model needs to predict the <unk> token for labels that
should not be associated with a given text), MuLX-QA loses its ability to correctly predict labels. Now, it predicts
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Table 7. Results of diferent ablation tests on the MuLX-QA model.

Model Tuple-Pre Tuple-Rec Tuple-F1

Best Baseline (Paraphrase) 0.4303 0.4041 0.4168

Original MuLX-QA 0.4175 0.4914 0.4514

MuLX-QA without exclusive-class questions 0.4508 0.4269 0.4385

MuLX-QA without negative questions 0.0604 0.5883 0.1096

Neg Sample Rate (N)

S
co

re
s 

on
 V

al
 S

et

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1 2 3 4 5 6 7 8 9 10 11

Tuple-Pre Tuple-Rec Tuple-F1

Fig. 2. Performance of MuLX-QA on varying N in terms of tuple-metrics on the validation set of CAVES.

a text span as rationale for questions asked with any of the labels. Consequently, it performs very poorly on the
Tuple-Precision score.

6.2 Performance of MuLX-QA in various scenarios

In this section we analyse the performance of our model in diferent scenarios ś modifying the model architecture,
varying N , input prompts, and the training dataset size. We also examine the applicability of our model over
non-English data.

Efect of N : The negative sample rate (N ) is an important hyper-parameter of MuLX-QA, which determines
how many negative/contrastive questions per tweet to be included in the set of input data points (described
earlier in Section 4.3). In case of the HateXplain dataset, since there are only 3 classes, N varies between 1 and 2
only and we get better results with N = 2. However, in case of CAVES, N can vary between 1 and 11, and we
observe some interesting trends.
We trained MuLX-QA on the training dataset for 6 epochs with diferent N . We then plot the performance

on the validation set of the CAVES dataset in Figure 2. We observe that on increasing the value of N , the
Tuple-Precision increases while the Tuple-Recall decreases steadily. This could be intuitively explained as that
the model gets more precise with more negative examples being asked, as it becomes more aware of which labels
should not be associated with a given tweet.
The Tuple-F1 rises steadily till N = 5, after which it evens out and we see only minor change after that. The

maximum score of 0.4617 (on the CAVES validation set) is obtained at N = 9. However, it should be noted that
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Fig. 3. Performance of diferent questions in terms of Tuple-F1 scores compared to the best baseline, Paraphrase. łOriginalž
refers to the questions described earlier in Table 5.

increasing the value of N also increases the size of the training data, which in turn increases the training time
linearly. To achieve a balance between the training time and the performance, we selectedN = 5 for reporting our
inal results on the CAVES dataset, for which the score on the validation set is 0.4552, but for which the model can
be trained nearly twice as faster than when usingN = 9. We also notice that, on the test set,N = 9 sufers a slight
decrease in Tuple-F1 score (0.4506) than that with N = 5 (0.4514). To summarize, we observe that increasing the
value of N only increases performance up to a certain point, while also increasing the training time required by
the model. Thus it is better to increase the value only till there is a signiicant increase in performance.

Efect of diferent question prompts: The use of generic and simple templates to frame our questions for
training MuLX-QAmakes our solution generalizable to other datasets/domains. The choice of words/prompts
or the use of dataset metadata information (e.g., reasons for not taking vaccines, or reasons for hate-speech) to ill
the templates can however impact the overall model performance. To understand this efect, and to systematically
obtain our best prompts, we compare, in Figure 3, the relative performance of MuLX-QA when trained with
diferent types of questions. The diferent prompts used to frame these questions are also reported in Figure 3.
Questions range from being very simple (using only the <label> information) to being more complex and longer
(adding more natural language context or using dataset metadata information).

It is interesting to note that most of the prompts work well on both the datasets, with all corresponding model
versions outperforming the best baseline model, Paraphrase. However, MuLX-QA trained with ‘Original’ questions
(following a generic template ‘Why is the text <label>?’ for HateXplain, and ‘Why is <label> a reason for not
taking vaccines?’ for CAVES, as reported in Table 5), achieve marginally better scores. These questions, although
being generic, are not only longer but also use the dataset metadata information (for CAVES) to give more context
to the model to condition its outputs on. At the same time, it is encouraging to observe that the scores with
shorter prompts on both the datasets are almost at par with the best obtained results. Hence, while applying
MuLX-QA on newer datasets, framing short questions just by using the class <label> (such as ‘Why <label> ?’) is
usually a good starting point. Further improvement may be achieved by incorporating more domain-speciic
signals in the questions.
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Fig. 4. Tuple-F1 scores of models with limited training data. Scores are obtained on the original test sets.

Table 8. Performance of the proposed model and the best baseline model on the łViHOSž [25] dataset on hates-speech in
Vietnamese language.

Model Tuple-Pre Tuple-Rec Tuple-F1

Best Baseline (Paraphrase) 0.6447 0.6447 0.6447

MuLX-QA 0.7661 0.7523 0.7591

Efect of training dataset size: Finally, we also try to understand the efect of training data size on the
performance of MuLX-QA, when compared to the encoder-decoder generative models ś Paraphrase and Uniied-
BART. To this end, we trained these three models on various (randomly selected) fractions of the training (and
validation) sets - 1%, 5%, 10%, 20%, 50% and 100%, and evaluated them on the original test set data. For each setting,
the models were trained the same way as described previously (refer Section 5.1). These experiments help us to
understand how MuLX-QA fares against strong generative baselines in limited data settings.

The Tuple-F1 scores of the three models obtained on the two datasets have been plotted in Figure 4. MuLX-QA
performs the best in all scenarios, which demonstrates the robustness of our model across varying sizes of
available training data. The two encoder-decoder models perform mostly similarly. However, on CAVES, we
observe that the Uniied-BART model performs much worse than MuLX-QA and Paraphrase with 5% and 10% data
sizes. This gap is however less pronounced on the HateXplain dataset. A possible explanation of this diference
could be that the pre-training strategy of T5 (backbone of Paraphrase) is more suitable to handle text-to-text
tasks; as a result, even with less data to train on, Paraphrase performs better than Uniied-BART. Also, BART
(backbone of Uniied-BART ) is pre-trained for sequence-to-sequence tasks. Uniied-BART, trained to generate
sequence of indices instead of sequence of words, seems to need more data to understand the mapping between
tokens/class labels and their corresponding indices. Lastly, the number of labels is 12 in case of CAVES, whereas
HateXplain has only 3 labels, which makes the task easier on the latter. Also, HateXplain has twice the amount
of training data as the CAVES dataset.
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Application on other languages: As discussed in Section 2, there is now an increasing amount of work on
social media text in non-English languages. We therefore wanted to analyse the performance of our model on
some language that is completely diferent from English. To this end, we select the ViHOS dataset [25] which
contains texts in Vietnamese having two classes (hateful / not-hateful), with hateful spans being marked for the
hateful class. This dataset contains about 11K samples split into train-validation-test subsets in the ratio 80:10:10.
In about half the samples, there exist hateful spans. Though this dataset has only two possible classes depending
on the presence / absence of spans, we can map it to our tuple-prediction task.
We applied MuLX-QA on the ViHOS dataset with two minor changes. First, we used the PhoBERT-base-v2

encoder [55] (instead of RoBERTa), which is a RoBERTa encoder pre-trained on Vietnamese texts. Second, we
asked it the questions łTai sao ghét ?ž (‘Why hate?’ in Vietnamese) and łTai sao không ghét ?ž (‘Why not hate?’
in Vietnamese) respectively for hateful and not hateful classes. We then trained the model as before, on the
training set of ViHOS, and used the validation set to ind the best checkpoint. Our model MuLX-QA achieved a
Tuple-F1 score of 0.7591 on the test set of ViHOS, as shown in Table 8. For comparison, we also considered the
Paraphrase model, which was the best baseline as per our previous analysis, using T5-vietnamese7 (instead of
T5). We trained it on the ViHOS train dataset and applied it on the ViHOS test dataset. Table 8 shows the results
of the Paraphrase model as well. It is seen that our proposed model performs much better than the Paraphrase
model on this dataset as well, which demonstrates the utitlity of our propoed MuLX-QA model for non-English
data as well.

6.3 ualitative Comparison of MuLX-QA with Paraphrase, our strongest baseline

In this section, we qualitatively analyse some predictions made by MuLX-QA and our strongest baseline, Para-
phrase. We also compare their model complexities.

Manual analysis of predictions: As seen in the previous section, MuLX-QA is able to predict the correct labels
and corresponding rationale spans (with respect to the gold standard annotations) in many cases, quantitatively
outperforming strong baselines in the process. Now, we qualitatively analyze where our model is going wrong,
and where MuLX-QA is performing better than Paraphrase.
Table 9 shows, for two test set tweets/posts from each dataset (H1, H2 from HateXplain, and C1, C2 from

CAVES), the ground truth tuple (label and rationale), and the tuples predicted respectively by MuLX-QA and
Paraphrase. First, we notice that in quite a few cases, the predicted rationale spans (by both models) are either
too short or too long compared to the ground truth rationales. Hence the ��� falls slightly below 0.5 (the
minimum requirement to be declared as overlap according to our metrics, as described in Section 5.1), and hence
the predicted rationales do not ‘match’ the ground truth according to the metrics. However, we observe that
Paraphrase more frequently tends to extract much longer rationale spans than the ground truth, compared to
MuLX-QA. H1 & H2 are two such examples. We also notice cases where Paraphrase completely misses the ground
truth rationales, possibly because it concentrates more on discriminative words (such as ‘hate muslims’ in H1
and ‘loating’ in C1. As a result, it tends to predict wrong labels more often than MuLX-QA.
When we check tweets where both the models fail according to our tuple-metrics, MuLX-QA apparently

outputs much more relevant spans. For example, for C2 in Table 9, even though the rationale span predicted by
MuLX-QA does not match the ground truth rationale, the predicted rationale is still related to the ‘inefective’
class, unlike the prediction of the Paraphrase model which extracts something completely irrelevant.

Complexity Analysis: As we saw earlier in Section 5.4, our proposed model MuLX-QA outperforms heavier
encoder-decoder generative models, even though it is an encoder-only model. Speciically, Paraphrase uses

7https://huggingface.co/sangcamap/t5_vietnamese_qr
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Table 9. ualitative comparison of predictions made by MuLX-QA and Paraphrase.

# Tweet Excerpt Ground Truth

Tuple

MuLX-QA Tuple Paraphrase Tuple

HateXplain Dataset

H1 bring out the uneducated hill-

billies and white supremacists

to our sign meeting duh i work

oil duh i like truck duh me hate

muslim duh i can not read

(normal, -) (normal, -) (hateful, bring out the

uneducated hillbillies

· · · duh me hate mus-

lim duh i can not read)

H2 any wigger who calls white

missionaries who save the non

white children in africa india ect

a race traitor is an actual h0m0

(ofensive, wig-

ger h0m0)

(ofensive, wigger) (ofensive, wigger white

missionaries who save

the lives of non white

children in africa)

CAVES Dataset

C1 whistleblower reveals emails

discussing covid vax we want

to avoid having the info on the

fetal cells loating out there

(ingredients, fe-

tal cells)

(ingredients, info

on the fetal cells)

(side-efect, Fetal Cells

Floating Out There)

C2 you can always re infect with

the same cold, there will never

be a vaccine this thing touted

by pizer is probably a weak in-

fection agent

(inefective, re

infect with the

same cold)

(inefective, pizer

is probably a weak

infection agent)

(inefective, never be a

vaccine)

T5-base encoder-decoder which has 220M (million) parameters, and Uniied-BART uses BART-large encoder-
decoder which has 406M parameters. In comparison, MuLX-QA uses a RoBERTa-base encoder which has only
125M parameters, thus resulting in a much smaller memory footprint, and requiring less GPU-memory to train.

Next, we analyse the time-complexity of the models. If we feed a sequence of � tokens as input to a transformer
encoder with hidden dimension � , the time complexity is � (�2� + ��2) [76, 92]. Similarly, a transformer decoder
running � auto-regressive steps (generating � tokens) has a time complexity of � ((�2� + ��2) · �). For encoder-
decoder models such as BART and T5, the overall time complexity amounts to � ((�2� + ��2) · (1 + �)). For
MuLX-QA, the QA-model has a time complexity of� (�2� +��2 +��) which can be approximated as� (�2� +��2).
However, we ask a question to the model N times, which brings the complexity to � ((�2� + ��2) · N). Thus our
model usually takes less time to run if we use relatively low value of N .
As a future work, we envision to explore better ways to reduce the inference time ś such as using a separate

lightweight classiier to predict potential classes with higher recall, followed by utilizing MuLX-QA to predict the
answers only for those classes.

7 CONCLUSION

In this work, we focus on the task of explainable multi-label classiication on two challenging datasets related
to two diferent types of untrustworthy / harmful content prevalent in social media ś hate speech, and vaccine
misinformation. Our proposed Question-AnsweringmodelMuLX-QA, using simple and generic question prompts,
outperforms several strong baselines, including state-of-the-art encoder-decoder generative models on both the
datasets. The implementation of our model will be made publicly available upon acceptance of the paper. As a
future work we propose to apply MuLX-QA in other domains (apart from social media posts) where explanations
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are important for classiication. We also propose to use these models to gain insights about real world trends on
social media in the respective domains.
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