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ABSTRACT
We propose VADEC, a multi-task framework that exploits the cor-
relation between the categorical and dimensional models of emotion
representation for better subjectivity analysis. Focusing primarily
on the effective detection of emotions from tweets, we jointly train
multi-label emotion classification and multi-dimensional emotion
regression, thereby utilizing the inter-relatedness between the tasks.
Co-training especially helps in improving the performance of the
classification task as we outperform the strongest baselines with
3.4%, 11%, and 3.9% gains in Jaccard Accuracy, Macro-F1, and Micro-
F1 scores respectively on the AIT dataset [17]. We also achieve
state-of-the-art results with 11.3% gains averaged over six differ-
ent metrics on the SenWave dataset [27]. For the regression task,
VADEC, when trained with SenWave, achieves 7.6% and 16.5% gains
in Pearson Correlation scores over the current state-of-the-art on
the EMOBANK dataset [5] for the Valence (V) and Dominance (D)
affect dimensions respectively. We conclude our work with a case
study on COVID-19 tweets posted by Indians that further helps in
establishing the efficacy of our proposed solution.
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1 INTRODUCTION
With the proliferation of social media, as more and more people
express their opinions online, detecting human emotions from their
written narratives, especially tweets has become a crucial task
given its widespread applications in e-commerce, public health
monitoring, disaster management, etc. [17, 18]. Categorical mod-
els of emotion representation such as Plutchik’s Wheel of Emotion
[21] or Ekman’s Basic Emotions [8] classify affective states into dis-
crete categories (joy, anger, etc.). Dimensional models on the other
hand describe emotions relative to their fundamental dimensions.
Russel and Mehrabian’s VAD model [23] for instance interprets
emotions as points in a 3-D space with Valence (degree of pleasure
or displeasure), Arousal (degree of calmness or excitement), and
Dominance (degree of authority or submission) being the three
orthogonal dimensions. Accordingly, the literature on text-based
emotion analysis can be broadly divided into coarse-grained classi-
fication systems [10, 12–14, 28] and fine-grained regression systems
[22, 24, 29, 30]. Although a coarse-grained approach is better-suited
for the task of detecting emotions from tweets as observed in [4],
prior works fail to exploit the direct correlation between the two
models of emotion representation for finer interpretation. We uti-
lize the better representational power of dimensional models [4]
to improve the emotion classification performance by proposing
VADEC that jointly trains multi-label emotion classification and
multi-dimensional emotion regression in a multi-task framework.

Multi-task learning [6] has been successfully used across a wide
spectrum of NLP tasks including emotion analysis [1, 30]. While
AAN [30] takes an adversarial approach to learn discriminative
features between two emotion dimensions at a time, All_In_One
[1] proposes a multi-task ensemble framework to learn different
configurations of tasks related to coarse- and fine-grained sentiment
and emotion analysis. However, none of the methods combine
the supervisions from VAD and categorical labels. Our proposed
framework (Section 2) consists of a classifiermodule that is trained
for the task of multi-label emotion classification, and a regressor
module that co-trains the regression tasks corresponding to the
V, A, and D dimensions. Owing to the unavailability of a common
annotated corpus, the two tasks are trained using supervisions from
their respective benchmark datasets (reported in Section 3.1), which
further justifies the utility of our proposed multi-task approach.

VADEC learns better shared representations by jointly training
the two modules, that especially help in improving the performance
of the classification task, thereby achieving state-of-the-art results
on the AIT [17] and SenWave [27] datasets (Section 3.3). For the
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Figure 1: Components and Model Architecture: Pre-trained
BERTweet serves as the Shared Text Encoder between the
Classifier and Regressor modules.(a) EC and (b) VADR re-
spectively represent the Multi-label Emotion Classifier and
Multi-dimensional EmotionRegressor when trained individ-
ually. (c) VADEC represents our Multi-Task Affect Classifier
that co-trains the two modules by optimizing the joint loss.

regression task, we achieve SOTA results on the EMOBANK dataset
[5] for V and D dimensions (Section 3.4). We conclude our work
with a detailed case study in Section 3.5, where we apply our trained
multi-task model to detect and analyze the changing dynamics of
Indian emotions towards the COVID-19 pandemic from their tweets.
We discover the major factors contributing towards the various
emotions and find their trends to correlate with real-life events.

2 VADEC ARCHITECTURE
Figure 1 illustrates the architecture of VADEC, that jointly trains
a multi-label emotion classifier and a multi-dimensional emotion
regressor with supervision from their respective datasets. Since
we primarily focus on detecting emotions from tweets, we use
BERTweet [19] to serve as our text-encoder. It is shared by the two
modules and is hereby referred to as the shared layer. The 768-
dim. [𝐶𝐿𝑆] token embedding of the sentence/tweet obtained from
BERTweet is first passed through a fully connected (FC) layer with
256 neurons in both the modules respectively. The classifier passes
this intermediate representation through another FC layer with 11
output neurons, each activated using Sigmoid with a threshold of 0.5
to predict the presence/absence of one of the 11 emotion categories.
Binary Cross-Entropy (BCE) with L2-norm regularization is used
as the loss function, hereby referred to as the ECLoss. Similarly, the
regressor passes the 256-dim. intermediate representation through
an FC layer with 3 output neurons (with Sigmoid activation) corre-
sponding to the V, A and D dimensions. It then jointly optimizes

the Mean Squared Error (MSE) loss of all three dimensions, hereby
referred to as the VADRLoss. VADEC jointly trains the two modules
by optimizing the following multi-task objective:

𝑉𝐴𝐷𝐸𝐶Loss = 𝜆 · ECLoss + (1 − 𝜆) · VADRLoss (1)
Here, 𝜆 represents a balancing parameter between the two losses.
The weighted joint loss backpropagates through the shared layer,
thereby fine-tuning the BERTweet parameters end-to-end.

3 RESULTS AND DISCUSSION
3.1 Datasets
For our experiments, we consider EMOBANK, a VAD dataset, and
two categorical datasets, AIT and SenWave as described below:
• EMOBANK (Buechel and Hahn [5]) : A collection of around 10k
English sentences from multiple genres (8,062 for training, and
1K sentences each for validation and testing), each annotated
with continuous scores (in the range of 1 to 5) for Valence,Arousal,
and Dominance dimensions of the text.
• AIT (Mohammad et al. [17]) : Created as part of SemEval 2018
Task 1: “Affect in Tweets”, it consists of 10,983 English tweets
(6,838 for training, 886 for validation, 3,259 for testing), each with
labels denoting the presence/absence of a total of 11 emotions.
• SenWave (Yang et al. [27]) : Till date the largest fine-grained
annotated COVID-19 tweets dataset consisting of 10K English
tweets (8K for training, and 1K each for validation and testing),
each with corresponding labels denoting the presence/absence
of 11 different emotions specific to COVID-19.

3.2 Experimental Setup
For all our model variants, we perform extensive experiments with
different sets of hyper-parameters and select the best set w.r.t. low-
est validation loss. Before evaluating the performance on the test
set, we combine the training and validation data and re-train the
models with the best obtained set of hyper-parameters (learning
rate = 2𝑒−5, weight decay = 0.01, 𝜆 = 0.5, and no. of epochs = 5 for
VADEC). For the regression task, the outputs of Sigmoid activation
at each of the three output neurons are suitably scaled before cal-
culating the MSE loss since the ground-truth VAD scores are in the
range of 1-5. Asmodel ablations, we investigate the role played
by features derived from affect lexicons by additionally appending
a 194-dim. Empath1 [9] feature vector to the intermediate represen-
tations learnt by our model variants to be used for final predictions.
Parameters of our shared encoder are initialized with pre-trained
model weights (roberta-base for RoBERTa, and bertweet-base for
BERTweet) from the HuggingFace Transformers library [25]. Other
model parameters are randomly initialized. All our model variants
are trained end-to-end with AdamW optimizer [16] on Tesla P100-
PCIE (16GB) GPU. We additionally ensure the reproducibility of
our results and make our code repository 2 publicly accessible.

3.3 Evaluating Emotion Classification
We first discuss the comparative results of our model variants and
ablations on theAIT dataset. We then respectively report our state-
of-the-art results achieved on the AIT and the SenWave datasets.
1https://github.com/Ejhfast/empath-client
2https://github.com/atharva-naik/VADEC
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AIT Dataset
Asmetrics we use Jaccard Accuracy, Macro-F1, and Micro-F1 [17].
Among recent baselines: (i) BERTL (Park et al. [20]) denotes the
scores obtained by fine-tuning BERT-Large [7] on the AIT dataset,
and (ii) NTUA-SLP (Baziotis et al. [3]) represents the winning
entry for this (sub)task of SemEval 2018 Task 1 [17], where the
authors take a transfer learning approach by first pre-training their
Bi-LSTM architecture, equipped with multi-layer self attentions, on
a large collection of general tweets and the dataset of SemEval 2017
Task 4A, before fine-tuning their model on this dataset. Among
ourmodel variants and ablations: (i) EC represents our classifier
module, when trained as a single task (Fig. 1a), (ii) ECRoBERTa uses
RoBERTa [15] instead of BERTweet as the shared layer.

From Table 1, NTUA-SLP surprisingly outperforms BERTL (on
Jac. Acc. and Micro-F1), a heavier model with 336M parameters. EC
(trained with BERTweet) comfortably beats ECRoBERTa demonstrat-
ing the better efficacy of BERTweet in learning features from tweets.
The sparse Empath feature vectors do not however add any value
to the rich 768-dim. contextual representations learnt using BERT-
based methods. We obtain our best results with VADEC, with
respectively 3.4%, and 3.9% gains in Jacc. Acc., and Micro-F1
over NTUA-SLP, and 11% gain in Macro-F1 over BERTL.

SenWave Dataset
Considering the superior performance of VADEC over all its model
variants and ablations from Table 1, here we directly compare the
results of VADEC, re-trained with SenWave [27], with the ones re-
ported by the authors of [27], serving as the only available baseline
on this dataset. Following [27], we use Label Ranking Average Preci-
sion (LRAP), Hamming Loss, andWeak Accuracy (Accuracy) asmet-
rics in addition to the ones reported in Table 1. As observed from
Table 2, VADEC achieves SOTA by outperforming the baseline
scores with 11.3% performance gain averaged over all 6 metrics.

Overall, our results from Tables 1 and 2 demonstrate the advan-
tage of utilizing the VAD supervisions for improving the perfor-
mance of the multi-label emotion classification task.

3.4 Evaluating Emotion Regression
Pearson Correlation Coefficient r is used as the evaluation metric
for this task. All the models are evaluated on the EMOBANK dataset.
Among recent baselines: (i) AAN (Zhu et al. [30]) employs adver-
sarial learning between two attention layers to learn discriminative
word weight parameters for scoring two emotion dimensions at
a time. The authors report the VAD scores for all 6 domains and
2 perspectives of EMOBANK. For comparison, we use their high-
est correlation score for each dimension, (ii) All_In_One (Akhtar
et al. [1]) represents a multi-task ensemble framework which the
authors use for learning four different configurations of multiple
tasks related to emotion and sentiment analysis, (iii). SVR-SLSTM
(Wu et al. [26]) represents a semi-supervised approach using vari-
ational autoencoders to predict the VAD scores, and (iv). BERTL
(EB ← AIT) [20], the current state-of-the-art, fine-tunes BERT-
Large [7] on the AIT dataset to predict VAD scores by means of
minimizing EMD distances between the predicted VAD distribu-
tions and sorted categorical emotion distributions as a proxy for
target VAD distributions. For comparison, we use their reported

Table 1: Comparative Results on the AIT. Results of VADEC
are statistically significant than EC with 95% conf. interval.
Methods Jaccard Acc. F1-Macro F1-Micro
BERTL [20] 0.572 0.534 0.697
NTUA-SLP [3] 0.588 0.528 0.701
ECRoBERTa 0.592 0.570 0.712
w/ Empath 0.585 0.562 0.706

EC 0.605 0.581 0.723
w/ Empath 0.602 0.570 0.720

VADEC 0.608 0.593 0.728
Significance T-Test (p-values) 0.029 - -

Table 2: Comparative Results on the SenWave dataset.
Methods Accuracy Jac. Acc. F1-Macro F1-Micro LRAP Ham. Loss
SenWave [27] 0.847 0.495 0.517 0.573 0.745 0.153
VADEC 0.877 0.560 0.563 0.620 0.818 0.123

Table 3: Comparison of Pearson Correlation (r-values) for
the emotion regression task on the EMOBANK (EB) dataset.
Methods Valence (V) Arousal (A) Dominance (D)
AAN [30] 0.424 0.351 0.265
All_In_One [1] 0.635 0.375 0.277
SRV-SLSTM [26] 0.620 0.508 0.333
BERTL (EB← AIT) [20] 0.765 0.583 0.416
VADRRoBERTa 0.804 0.494 0.511
w/ Empath 0.798 0.482 0.510

VADR 0.821 0.553 0.493
VADEC (AIT) 0.820 0.563 0.459
VADEC (SenWave) 0.823 0.553 0.485

scores obtained upon further fine-tuning their best-trained model
on the EMOBANK corpus. Our model variants include (i) VADR
which represents our regressor module, when trained as a single task
(Fig. 1b), (ii) VADRoBERTa, an ablation where we experiment with
RoBERTa as the shared layer, (iii) VADEC (AIT), and (iv) VADEC
(SenWave) representing the scores of our multi-task model when
trained respectively with the AIT and SenWave datasets.

From Table 3, VADRRoBERTa shows the highest correlation (0.511)
on the D dimension. VADR (w/ BERTweet) however outperforms
VADRRoBERTa on the other two dimensions. Contrary to our ob-
servations in the classification task, co-training does not help in
improving the performance of the regression task, as can be con-
firmed from the results of VADEC (AIT) and VADR. Although we are
outclassed by BERTL (EB← AIT) on the A dimension, VADEC (AIT)
comfortably outperforms BERTL (EB← AIT) on the V and D dimen-
sions. VADEC (SenWave) further outclasses both VADEC (AIT)
and BERTL (EB← AIT) on V and D with 7.6% and 16.5% gains
respectively. To conclude, although joint-learning does not help the
regression task as much as it helps in improving the classification
performance (which in fact is our main objective), we still achieve
noticeable improvements in majority of emotion dimensions.

3.5 COVID-19 and Indians: A Case Study
For this analysis, we consider Twitter_IN, a subset of COVID-19
Twitter chatter dataset (version 17) [2], containing around 140K Eng-
lish tweets from India posted between January 25th and July 4th
2020. Owing to very few reported cases in India before March 2020,
we begin our analysis by predicting emotions from tweets, posted
on or after Match 1st 2020, using VADEC trained on EMOBANK
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Table 4: Few Examples of Single and Multi-label Predictions on Tweets from Twitter_IN

Tweet Predicted Labels
Single Label
Let us spare a moment and thought for the junior resident doctors of Mumbai on the frontline fighting it
out alone with little help from the government against all odds and at great personal risk

Thankful

This is the time to fight Covid19 at present but some intelligent Generals are focusing on war and terrorism Annoyed
Multiple Labels
The first Covid 19 positive from Meghalaya Dr John Sailo Rintathiang passed away early this morning.
Sailo 69 who was also the owner of Bethany hospital was tested positive on April 13 2020

Sad, Official Report

Media is so obsessed with a particular community that they even misspell coronavirus Annoyed, Joking, Surprise

Table 5: Major aspects affecting various emotions among Indians towards the COVID-19 pandemic.

Emotion Major aspects
Annoyed govt, politics, death, news, religion, jamaat, work, China, assault, border
Sad lockdown, death, distancing, life, family, economy, village, doctor, worker, school
Thankful doctor, service, staff, nurse, app, fund, assistance, leadership
Optimistic initiative, opportunity, measure, arogyasetuapp, IndiaFightsCorona, stayhome, vaccine, change, support, action

(a) Annoyed (b) Optimism

Figure 2: Change in Sub-categories of Emotional Triggers towards the COVID-19 pandemic over time.

and SenWave. Few tweets with their predicted emotions are listed
in Table 4. For each emotion, we obtain its contributing aspects by
training an unsupervised neural topic model, ABAE (He et al. [11])
on the subset of tweets containing the given emotion as per VADEC
predictions. Few emotions along with their most accurate aspects
are reported in Table 5. For each emotion, the extracted aspect
terms are further filtered and assigned meaningful sub-categories
by means of a many-to-many mapping. In Figure 2, we plot the tem-
poral trends of these sub-categories (with roughly equal-sized bins
in terms of no. of tweets predicted with the emotion plotted) that
respectively made Indians feel annoyed (Fig. 2a) and optimistic (Fig.
2b) over time. In Fig. 2a, the peak in Crowd gathering betweenMarch
28th and April 7th can be attributed to the Tablighi Jamaat gather-
ings3 unfortunately triggering widespread criticism. Fig. 2b shows
a high level of Community gratitude in general, with occasional
peaks which may be attributed to the events targeted at raising
solidarity among the public. For Technology and AI, we observe a
peak near the launch date of the Arogya Setu App4 - developed by
the Indian Government to identify COVID-19 clusters.
3https://en.wikipedia.org/wiki/2020_Tablighi_Jamaat_COVID-19_hotspot_in_Delhi
4https://en.wikipedia.org/wiki/Aarogya_Setu

4 CONCLUSION AND FUTUREWORK
In this work, we for the first time exploit the correlation between
categorical and dimensional models of emotion analysis by propos-
ing VADEC, a multi-task affect classifier with the primary objective
of efficiently detecting emotions from tweets. Co-training the tasks
of multi-label emotion classification and multi-dimensional emotion
regression helps the former thereby achieving state-of-the-art re-
sults on two benchmark datasets, AIT (non-COVID) and SenWave
(COVID-related). For the regression task, VADEC still outperforms
the strongest baseline on the EMOBANK dataset on the V and D
dimensions. In future, we would like to investigate the hierarchical
relationship between the tasks and analyze the relative impact of
each emotion dimension on the emotion classification task.
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