

PASTE: A TAGGING-FREE DECODING FRAMEWORK USING POINTER NETWORKS FOR ASPECT SENTIMENT TRIPLET EXTRACTION Rajdeep Mukherjee, Tapas Nayak, Yash Butala, Sourangshu Bhattacharya, Pawan Goyal

Aspect Sentiment Triplet Extraction

Given a sentence, ASTE deals with extracting **opinion** *triplets*, consisting of an opinion target or aspect, its associated sentiment, and the corresponding opinion term/span explaining the rationale behind the sentiment.

	The weather was gloomy , but the food was tasty .							
-	et 1: (weather, gloomy, <mark>NEGATIVE</mark>) et 2: (food, tasty, POSITIVE)	}	Triplets with Different Sentiments					
	The <mark>film</mark> was good , but co	u <mark>ld h</mark> a	ave been better .					
	(film, good, POSITIVE) (film, could have been better, <mark>NEGA</mark>	TIVE)	Aspect-Overlapped Triplets					

Limitations of Prior Works

- Early efforts break the interaction between aspects and opinions by extracting them in isolation using separate BIEOS-based sequence taggers.
- Some of the later methods rely on word-pair sentiment dependencies, and hence cannot guarantee span-level sentiment consistency.
- One of the recent methods extends the BIEOS tags to propose a novel position-aware tagging scheme. None of their model variants can, however detect both aspect- as well as opinion-overlapped triplets.

Our Goals

- Offer a new perspective to solve the task investigate the utility of a tagging-free scheme.
- Jointly extract aspect and opinion spans by modeling their interdependence *during* the extraction process.
- Present a truly end-to-end solution while effectively capturing the inter-relatedness between all three elements of an opinion triplet.
- Can we use a generative framework for the task?

PASTE Architecture

PASTE uses an encoder-decoder architecture with a Pointer Network-based decoding framework that generates an entire opinion triplet at each time step. Different from prior works, our solution is **tagging-free** and end-to-end.

Experiments and Results

Model	Laptop		14Rest		15Rest			16Rest				
wiouei	P.	R.	F ₁	P.	R.	F ₁	P.	R.	F ₁	P.	R.	F ₁
What-How-Why	0.374	0.504	0.429	0.432	0.637	0.515	0.481	0.575	0.523	0.470	0.642	0.542
OTE-MTL	0.492	0.405	0.451	0.630	0.551	0.587	0.579	0.427	0.489	0.603	0.534	0.565
JET ^o	0.560	0.354	0.433	0.615	0.551	0.581	0.644	0.443	0.525	0.709	0.570	0.632
GTS-BiLSTM	0.597	0.348	0.439	0.686	0.528	0.597	0.654	0.443	0.528	0.686	0.515	0.588
PASTE-AF	0.537	0.486	0.510	0.624	0.618	0.621	0.548	0.534	0.541	0.622	0.628	0.625
PASTE-OF	0.521	0.481	0.500	0.634	0.619	0.626	0.548	0.526	0.537	0.623	0.636	0.629

Figure: Comparative results on the Laptop (SemEval 14Lap) and Restaurant (14Rest, 15Rest, 16Rest) datasets from ASTE-Data-V2.

from two domains: laptop and restaurant, with 27.68% of all sentences containing aspect/opinion overlapped triplets.

Baselines:

• What-How-Why: A 2-stage pipeline approach. Aspect-sentiment pairs and opinion spans are extracted separately. • OTE-MTL: A multi-task framework. Two separate sequence taggers detect the aspect and opinion spans in isolation. • JET: A novel position-aware tagging scheme. JET $^{\circ}$ /JET^t cannot handle opinion/aspect-overlapped triplets. • GTS: A novel grid tagging scheme. Models word-level interactions; can't guarantee span-level sentiment consistency.

CNeRG Lab, Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur

Dataset: Experiments are conducted on the ASTE-Data-V2 (proposed by the authors of JET). It contains sentences

Performance on Challenging Data Points

Model	Laptop					
WIGHT	Single	Multi	MultiPol	Overlap		
JET ^o	0.453	0.406	0.219	0.363		
OTE-MTL	0.485	0.277	0.172	0.380		
GTS-BiLSTM	0.418	0.452	0.237	0.403		
PASTE-AF	0.506	0.512	0.216	0.507		
PASTE-OF	0.495	0.502	0.205	0.511		

Figure: Comparison of F1 scores on different splits of *Laptop* dataset.

- Single: Sentences with a single opinion triplet.
- Multi: Sentences with a multiple triplets.
- MultiPol: Sentences containing at least two triplets with different sentiment polarities.
- Overlap: Sentences with overlapping triplets.

Additional results are available in the paper.

Key Highlights

- We formulate ASTE as a structured prediction problem.
- We propose a *tagging-free* position-based scheme to uniformly represent an opinion triplet, irrespective of varying lengths of aspect and opinion spans.
- The *Pointer Networks* exploit the aspect-opinion interdependence during the span detection process.
- The *Triplet Decoder* models the aspect-opinion span-level interactions for sentiment prediction.
- PASTE decodes a complete triplet at each time step, thereby making our solution truly *end-to-end*.
- Model Variants: PASTE-AF and PASTE-OF based on whether the first pointer network is used to detect the aspect or opinion span respectively.
- We obtain **15.6% recall gains** (averaged across PASTE-AF and PASTE-OF) over the respective strongest baselines on all the datasets.
- *PASTE* performs better while handling sentences with multiple, and aspect/opinion-overlapped triplets.

For Further Information

Preprint: https://arxiv.org/pdf/2110.04794.pdf Github: https://github.com/rajdeep345/PASTE